ディープラーニングの適用範囲が拡がり、画像認識や音声認識の精度が高くなる一方、モデルに対して細工した画像を送り、誤った分類結果を引き起こす攻撃などが懸念され始めています。海外では非常に活発な研究領域です。たとえば、敵対的サンプル(Adversarial example)として、パンダ(Panda)の画像にノイズを少し加えることでテナガザル(Gibbon)と誤認識させる現象が有名です。
本書では、これらを理解するためにディープラーニングの基礎からハンズオンによる実装方法まで解説しています。ディープラーニングは数式などがあって難易度が高く感じる方にも最適な一冊です。